DEEP LEARNING


What is Deep Learning? A Simple Explanation

Deep Learning is an artificial intelligence function that imitates the workings of the human brain in processing data and creating patterns for use in decision making. Deep learning is a subset of machine learning in Artificial intelligence (AI) that has networks capable of learning unsupervised from data that is unstructured or unlabeled. Also known as deep neural learning or deep neural network.

Deep learning has evolved hand-in-hand with the digital era, which has brought about an explosion of data in all forms and from every region of the world. This data, known simply as big data, is drawn from sources like social media, internet search engines, e-commerce platforms, and online cinemas, among others. This enormous amount of data is readily accessible and can be shared through fintech applications like cloud computing. However, the data, which normally is unstructured, is so vast that it could take decades for humans to comprehend it and extract relevant information. Companies realize the incredible potential that can result from unraveling this wealth of information and are increasingly adapting to AI systems for automated support.

Deep learning, a subset of machine learning, utilizes a hierarchical level of artificial neural networks to carry out the process of machine learning. The artificial neural networks are built like the human brain, with neuron nodes connected together like a web. While traditional programs build analysis with data in a linear way, the hierarchical function of deep learning systems enables machines to process data with a nonlinear approach. A traditional approach to detecting fraud or money laundering might rely on the amount of transaction that ensues, while a deep learning nonlinear technique would include time, geographic location, IP address, type of retailer and any other feature that is likely to point to fraudulent activity. The first layer of the neural network processes a raw data input like the amount of the transaction and passes it on to the next layer as output. The second layer processes the previous layer’s information by including additional information like the user's IP address and passes on its result. The next layer takes the second layer’s information and includes raw data like geographic location and makes the machine’s pattern even better. This continues across all levels of the neuron network.

Useful Links

  • investopedia.com
  • hackernoon.com
  • machinelearningmastery.com
  • edx.org